Preliminary communication

A ¹³C-n.m.r. study on the conformation of L-ascorbic acid in deuterium oxide

TOMOYA OGAWA, JUN UZAWA, and MASANAO MATSUI

The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 (Japan) (Received October 14th, 1977; accepted for publication, October 28th, 1977)

Aside from its significance as a vitamin and as an antioxidant in foodstuffs, recent biochemical studies on L-ascorbic acid (1) have disclosed its further importance in such biological roles as a co-factor of enzymes¹, and as a possible intermediate in biological sulfation² and in host resistance to malignant diseases³.

As part of a project on chemical study of L-ascorbic acid, we now report ¹³C-n.m.r. data for both L-ascorbic acid and 5-C-deuterated L-ascorbic acid⁴ (2) that have revealed the preponderant conformation of 1 in aqueous solution.

The long-range, ¹³C-¹H, spin-spin coupling-constants were obtained from the proton-coupled, ¹³C-n.m.r. spectra with gated decoupling, and were confirmed either by long-range, selective, proton-decoupling experiments⁵, or by comparison of the data for 1 and those for 2, as shown in Figs. 1 and 2. The coupling constants thus obtained are summarized in Table I.

The observation of both a small, vicinal coupling ${}^3J_{\text{C-4,H-6}} = {}^3J_{\text{C-4,H-6}} = 2.4 \text{ Hz}$, which indicates a gauche relationship ${}^6(a)-(e)$ between C-4 and H-6 and C-4 and H-6' about the C-5-C-6 bond, and the normal, geminal coupling ${}^2J_{\text{C-6,H-5}} = 5.4 \text{ Hz}$ is consistent with rotamer 3 about the C-5-C-6 bond.

The observation of the small vicinal-couplings ${}^3J_{\text{C-6,H-4}} = 1.0 \text{ Hz}$ and ${}^3J_{\text{C-3,H-5}} = 1.5 \text{ Hz}$, which indicate gauche relationships between both C-6 and H-4, and C-3 and H-5 about the C-5-C-4 bond, is consistent with either rotamer 4 or 5. The small geminal-coupling of ${}^2J_{\text{C-4,H-5}} = 2.0 \text{ Hz}$, compared to the normal value of 4-5 Hz, however, favors rotamer 4 (rather than 5), as a trans relationship of H-5 to O-4 is present in 4 but a gauche one^{6b} in 5.

TABLE I

13C_1H SPIN_SPIN COUPLING (Hz)^G

Compound	Coupling pathway	Dihedral angle (degrees)	J _{l'ic} b	J_{gem}^{b}	^J direct
1	¹³ C-1-O-C-4-H-4	.0	2.0		
	15C-2-C-3-C-4-H-4	60	2.0		
	13C-3C-4C-5H-5	60	1.5	5.4	
	¹³ C-4-C-5-C-6-H-6	60	2.0*	2.0*	152.8
	13C-4-C-5-C-6-H-6'	60	2.0*	2.0*	152.8
	¹³ C-6-C-5-C-4-H-4	60	1.5	5.4	145.0
2	¹³ C-1-O-C4-H-4	60	2.0		
	¹³ C-2-C-3-C-4-H-4	60	2.0		
	¹³ C-3C-4C-5-D			5.9	
	¹³ C-4C-5C-6H-6	60	2.4*		
	13C-4C-5C-6H-6'	60	2.4*		
	¹³ C-6-C-5-C-4-H-4	60	1.0*		

 $a^{13}\text{C-N.m.r.}$ data were obtained with a JNM-FX100 FT n.m.r. apparatus operated at 25.05 MHz at 25° for compounds dissolved in D₂O. δ_{C} are expressed in p.p.m. downward from tetramethylsilane. Conditions for FT measurements: spectral width, 5 KHz; repetition time, 3.6 sec.; number of data points, 16 K; power level of long-range, selective proton-decoupling ~ 800 nT. $^{b}\text{All }J_{\text{Vic}}$ and J_{gem} values, except those marked with an asterisk, were confirmed by long-range, selective, proton-decoupling experiments, as shown in Figs. 1 and 2. Precision of J values is ± 0.24 Hz.

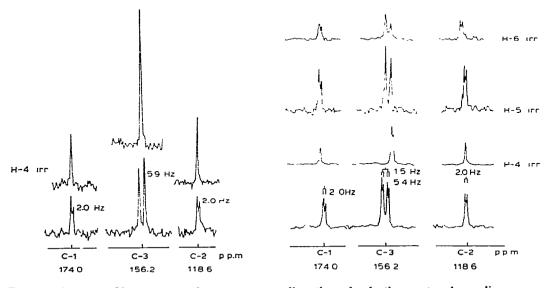
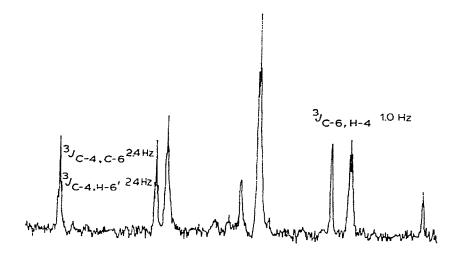



Fig. 1. Assignment of long-range, carbon—proton couplings through selective, proton decoupling (AA = ascorbic acid): left, proton-coupled spectra of 5-C-deuterated L-AA by gated decoupling technique; right, proton-coupled spectra of L-AA by gated decoupling technique.

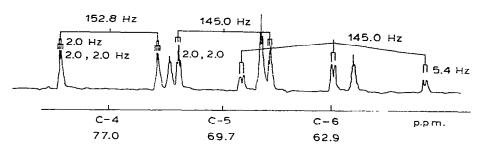
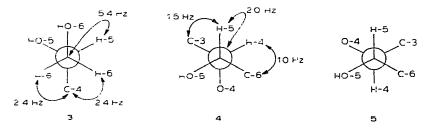



Fig. 2. Assignment of long-range, carbon—proton couplings through deuterium labelling (AA = ascorbic acid): top, proton-coupled spectra of 5-C-deuterated L-AA by gated decoupling technique; bottom, proton-coupled spectra of L-AA by gated decoupling technique.

Rotamers about the C-5-C-6 and C-5-C-4 bonds

In ranclusion, the most favored rotamer of L-ascorbic acid in aqueous solution was deduced from the ¹³C-n.m.r. data for 1 and 2, and shown to be 6.

Favored conformation of L-ascorbic acid

REFERENCES

- J. J. Hutton, Jr., A. L. Tappel, and S. Udenfriend, Arch. Biochem. Biophys., 118 (1967) 231-240;
 C. I. Levene, J. J. Aleo, C. J. Prynne, and C. J. Bates, Biochim. Biophys. Acta, 338 (1974) 29-36.
- 2 R. O. Mumma and A. J. Verlangieri, Biochim. Biophys. Acta, 273 (1972) 249-253.
- 3 E. Cameron and L. Pauling, Proc. Natl. Acad. Sci. U.S.A., 73 (1976) 3685-3689.
- 4 T. Ogawa, K. Taguchi, N. Takasaka, M. Mikata, and M. Matsui, Carbohydr. Res., 51 (1976) C1-C4.
- S. Sørensen, R. S. Hansen, and H. J. Jakobsen, J. Magn. Reson., 14 (1974) 243-245; J. Uzawa, Nihon Densi News, 16 (1976) 7-10; K. Bock and C. Pedersen, J. Magn. Reson., 25 (1977) 227-230.
- 6 (a) R. U. Lemieux, T. C. Nagabhushan, and B. Paul, Can. J. Chem., 50 (1972) 773-776; (b) J. A. Schwarcz and A. S. Perlin, ibid., 50 (1972) 3667-3676; (c) L. T. J. Debaere, M. N. G. James, and R. U. Lemieux, J. Am. Chem. Soc., 95 (1973) 7866-7868; (d) A. S. Perlin, N. Cyr, R. G. S. Ritchie, and A. Parfondry, Carbohydr. Res., 37 (1974) C1-C4; (e) T. E. Walker, R. E. London, T. W. Whaley, R. Barker, and N. A. Matwiyoff, J. Am. Chem. Soc., 98 (1976) 5807-5813.